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Summary
Aluminum toxicity is an important stress factor in acid soils. Growth, respiration and
permeability properties of root cells were studied in five cultivars of Lotus
corniculatus subjected to aluminum (Al) or low pH stress. The cultivars showed
significant differences in root elongation under stress conditions, which correlated
with changes in membrane potential (EM) of root cortical cells. A pH drop from 5.5 to
4.0 resulted in significant membrane depolarization and root growth inhibition. The
strongest inhibition was observed in cv. São Gabriel (33.6%) and least in cv. UFRGS
(25.8%). Application of an extremely high Al concentration (2mM) stopped the root
growth in cv. INIA Draco, while inhibition in cv. UFRGS reached only 75%.
The EM values of cortical cells of Lotus roots varied between �115 and �144mV.
Treatment with 250 mM of AlCl3 (pH 4) resulted in rapid membrane depolarization.
The extent of the membrane depolarization ranged between 51mV (cv. UFGRS) and
16mV (cv. INIA Draco). The membrane depolarization was followed by a loss of K+

from Al-treated roots (2mM Al) and resulted in a decrease of the diffusion potential
(ED). The total amount of K+ in Al-treated roots dropped from 31.4 to 16.8 mmol g�1

FW in sensitive cv. INIA Draco, or from 26.1 to 22.7 mmol g�1 FW in tolerant cv.
UFGRS. The rate of root respiration under control conditions as well as under Al
treatment was higher in cv. INIA Draco than in cv. UFRGS. Al-induced inhibition of
root respiration was 21–34% of the control.
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Introduction

Forage legumes play an important role in the
productivity of cultivated pasture due to their
capacity for nitrogen fixation and growth in
nutrient-poor conditions. The Lotus species in
particular have a good potential in cultivated
pasture, related to their ability to grow in slightly
acidic soils and moderate tolerance to aluminum,
manganese and sodium stress (Blumenthal and
McGraw, 1999; Wheeler and Dodd, 1995). The main
Lotus species with high forage value cultivated in
South America are Lotus glaber, Lotus subbiflorus,
Lotus corniculatus and Lotus uliginosus. Among
these, L. corniculatus is undoubtedly the species
considered to have the greatest agricultural im-
portance and the widest distribution (Dı́az et al.,
2005).

As with many other species of agronomic value,
productivity of Lotus pastures is limited by a
number of environmental constrains. Among these,
soil acidity is an important factor limiting crop
production (Foy, 1988; Haug, 1984). Acidic soils
constitute nearly 30% of the arable land in both
tropical and temperate belts, and it has been
estimated that over 50% of the world’s potentially
arable lands are acidic (von Uexküll and Mutert,
1995). Oxisols and ultisols represent the majority of
the acid soils in the tropical region and alfisols and
podsols are common in the cold and temperate
zones. Due to the high content of Fe and Al oxides
in oxisols, a large fraction of phosphate is fixed in
insoluble (and thus unavailable) form to plants,
leading to phosphate deficiency, but the main
constraint of these soils is the phytotoxicity of Al.

Aluminum, which is the most abundant metal in
the Earth’s crust, exists in various forms depending
on the pH of the soil solution and other physical and
chemical parameters of soils. At soil pH higher than
5.5, most Al is present in relatively insoluble
aluminosilicates, aluminophosphates and hydroxy-
oxides and does not exert any harmful effect on
plants. However, as the soil becomes more acidic,
Al is solubilized and toxic Al species (especially Al3+

form) are released into solution (Matsumoto, 2000).
Phytotoxicity of Al is characterized by rapid
inhibition of root elongation (Sivaguru and Horst,
1998) and subsequent decrease of nutrient uptake
(Baligar et al., 2001; Cakkmak and Horst, 1991;
Cabraia et al., 1989; Mariano and Keltjens, 2005;
Mistrı́k et al., 2000; Pal’ove-Balang and Mistrı́k,
2007), modification of structure and function of
plasma membranes (Ikegawa et al., 2000), inter-
ference with a number of metabolic pathways, etc.
(Mossor-Pietraszewska, 2001). While the apoplas-
mic and symplasmic target sites of Al in plant cells

are under debate, several studies have focused on
the plasma membrane as having a key function. By
using electrophysiological measurements, it is
possible to define motive forces for ions at the
plasma membrane and the activity of membrane
transporters involved in perturbation of plant
nutrition and metabolism in stress conditions.
Because the PM-H+-ATPase plays an important role
in generation of an electrical potential difference
(EM) across the plasma membrane and the genera-
tion of an electrochemical gradient of H+ that is
used to drive the transport of other substances in a
process called secondary active transport, its
functional characterization during Al-induced
stress may help to better understand their possible
role in Al resistance among different Lotus
cultivars. Within minutes, Al depolarizes the
membrane, affects the activity of channels and
other transporters (Illéš et al., 2006; Matsumoto et
al., 2001; Miyasaka et al., 1989; Olivetti et al.,
1995; Papernik and Kochian, 1997; Pavlovkin and
Mistrı́k, 1999; Sivaguru et al., 2003) and subse-
quently affects ion homeostasis and cell viability
(Sasaki et al., 1997). In spite of several attempts to
understand the impact of Al on membrane func-
tions, no conclusive evidence has been obtained to
date.

In the present work, analysis of the electrophy-
siological parameters of root cortical cells was
performed on two different L. corniculatus culti-
vars with contrasting resistance to Al stress,
selected from five cultivars obtained from Uruguay
and Brazil. The impact of Al and low pH on the
membrane potential differences, permeability of
root cells and root respiration were compared with
root growth parameters to examine possible corre-
lations between these processes and resistance of
Lotus cultivars to Al stress.

Material and methods

Plant material and growing conditions

Seeds of five Latin-American cultivars of Lotus
corniculatus, INIA Draco, Estanzuela Ganador, San
Gabriel, São Gabriel and UFRGS were obtained from
Dr. Monica Rebuffo (INIA La Estanzuela, Colonia,
Uruguay). Plants were grown on vermiculite
under controlled conditions (20 1C, 50% relative
humidity, 16 h photoperiod and approximately
120 mmolm�2 s�2 illumination) and subirrigated
with Hornum nutrient solution (Handberg and
Stougaard, 1992). After 25 d, the plants were
carefully removed from the vermiculite, washed
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with distilled water and transferred to 1 L contain-
ers filled with nutrient solution containing 1mM
CaCl2, 0.5mM KNO3, 0.5mM NH4NO3 and 0.5mM
KCl (control). For Al-treated plants, nutrient solu-
tion was supplemented with 0.25mM, 0.5mM or
2mM AlCl3. The pH was maintained at pH 4.0 or 5.5
(70.2) throughout the experiment’s duration,
which varied from 1 to 4 d (depending on the type
of experiment).

Root growth was expressed as root length,
measured after 4 d of Al treatment and expressed
as root length increment per day (difference of the
final root length to the initial root length divided by
the number of days).

The same experimental conditions were applied
for plants used for membrane potential and
respiration measurements.

Measurements of the membrane potential

Measurements of plasma membrane potential
(EM) were carried out at 22 1C on outer cortical cells
of 25mm-long apical root segments of Lotus by
standard microelectrode techniques described pre-
viously (Pavlovkin et al., 1993). After rinsing the
roots with 0.5mM CaSO4, root segments were
mounted onto a Plexiglas holder with a soft rubber
ring and mounted in a vertical 5mL plexiglass
cuvette, which was perfused with a standard
solution containing 0.1mM KCl, 1mM Ca(NO3)2
and AlCl3 at a flow rate of 10mLmin�1. The
microelectrode was inserted into the outer cortex
cells 2–5mm from the root tip. Insertion of the
microelectrode was observed under a microscope.

Fusicoccin (FC), as a PM-H+-ATPase stimulator,
was used (in 0.1% ethanol at a final concentration
of 15 mM) to monitor the functionality of the
membrane H+ pump (Marrè, 1979).

To establish anoxic conditions, the perfusion
solution was saturated with N2 gas by flushing.
The flow of the perfusion solution through the
measuring chamber at 10mLmin�1 was sufficient to
establish and to maintain anoxia (Pavlovkin et al.,
1986).

Respiration analyses

Two centimeter apical root segments were
used for measurement of total respiration rates
(VT; nmol O2 g

�1 DW s�1). Respiration was measured
polarographically using oxygen, Clark-type elec-
trode (YSI 5300, Yellow Springs Instrument, USA)
at 25 1C. The root segments were cut into 5mm
pieces and were sealed in a water-jacketed
vessel containing 3mL of fully aerated 10mM Na-

phosphate buffer (pH 6.8). In order to minimize the
problems of non-linear O2 depletion traces and to
eliminate potential wound respiration, handling of
roots was kept at a minimum and the uptake of O2

was measured immediately after excision from the
intact root. Linear traces that indicated no wound-
dependent increase in the respiration rate were
used for the calculations.

Potassium determination

For potassium determination, plants were culti-
vated for 4 d in a solution without Al (control) or
supplemented with 2mM AlCl3 (Al-treated). On the
5th day, 2.5 cm-long apical segments of the roots
were cut off, washed, frozen at �18 1C and, after
4 h, crude extracts were prepared by the addition
of deionized water to the frozen tissue. The
potassium content in the extract was determined
with an ion-selective electrode and was related to
the root fresh weight.

Results

Analysis of growth parameters of all the studied
cultivars of L. corniculatus (INIA Draco, Est.
Ganador, San Gabriel, São Gabriel and UFRGS)
revealed relatively high sensitivity to low pH of
the cultivation media. A drop of the pH from 5.5 to
4.0 resulted in significant root growth inhibition by
25.8–33.6% (Figure 1). On the other hand, rela-
tively low root growth inhibition by 10.8–23.9% was
caused by exposure of Lotus plants to 0.2 and
0.5mM Al for 4 d (Figure 2).
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Figure 1. Root length of different Lotus cultivars grown
for 1 week in growth solution with different pH values
(5.5 or 4.0). Mean values7SD (n ¼ 30).
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Significant differences were found between the
cultivars, which could be divided into two groups:
cultivars INIA Draco and San Gabriel showed higher
sensitivity to Al, whereas Est. Ganador, São Gabriel
and UFRGS were more tolerant. Application of an
extremely high Al concentration (2mM) practically
stopped root growth in cv. INIA Draco (95% inhibi-
tion), while inhibition in cv. UFRGS reached only
75% of the growth without Al.

In order to detect immediate responses of the
root cells to aluminum and pH of the media, the
electrical plasma membrane potential (EM) was
recorded before and during aluminum application,

as well as after the removal of aluminum from the
root media. The EM values of the outer cortex cells
of Lotus roots varied between �115 and �144mV
depending on the cultivar and pH of cultivation
media (Tables 1 and 2). The initial EM values of the
outer cortex cells were considerably more negative
in vacuolized cells localized on the root base than
in cells near the root tip. Thus, the apparent
energy-dependent component (EP) of EM in root tip
cells was only half (�26 to �32mV) that of root
base cortex cells (�60 to �70mV). Al at a
concentration of 2mM induced the greatest depo-
larization of the outer cortex cells localized at a
distance of 2–5mm from the root tip. With
increasing distance from the root tip, rate and
magnitude of the depolarization declined. All
further experiments were performed in outer
cortex cells localized in the region between 2 and
5mm from the root tip. Measurements of EM
performed at different pH of the external root
medium confirmed that the magnitude of EM is
strongly dependent on the pH of the root media. pH
values close to neutral (pH 6.5, results not shown)
or medium acidic (at 5.5) caused membrane
hyperpolarization, while acidification to pH 4
caused immediate depolarization (Table 1). The
EM of cv. INIA Draco decreased to �110mV (17.9%)
and in cv. San Gabriel to �112mV (11.1%) while in
cvs. Est. Ganador, São Gabriel and UFRGS the
depolarization was negligible and did not exceed 5%
of the control (pH 5.5) values.
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Table 1. The resting potential (EM) of root cortical cells of different Lotus cultivars (short time effect) exposed to a
growth medium of pH 5.5 (control) and after the change of pH of the solution to pH 4.0, or pH 4.0 supplemented with
250 mM AlCl3 (7SD, n ¼ 25).

Cultivar pH 5.5 EM (mV) pH 4.0 EM (mV) pH 4.0+250 mM Al EM (mV)

INIA Draco �134710 �11074 �9575
Est. Ganador �12875 �12276 �8774
San Gabriel �12677 �11275 �9776
São Gabriel �12677 �12176 �8175
UFRGS �13279 �12675 �7575

Table 2. Resting potential (EM) and diffusion potential (ED) after a 4-d treatment with pH 5.5, pH 4.0 and pH 4.0+2mM
AlCl3 (7SD, n ¼ 25).

Cultivar pH 5.5 pH 4.0 pH 4.0+2mM Al

EM (mV) ED (mV) EM (mV) ED (mV) EM (mV) ED (mV)

INIA Draco �135711 �7274 �12176 �6878 �8676 �317 6
Est. Ganador �12678 �7376 �11777 �6976 �10078 �50775
San Gabriel �12878 �7374 �11375 �677.7 �10276 �4077
São Gabriel �12675 �7375 �12277 �7074 �10676 �5175
UFRGS �13478 �7273 �13175 �7274 �11076 �5474
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Figure 2. Relative root growth inhibition of Lotus
cultivars grown for 4 d at different (0.2, 0.5 or 2.0mM)
Al concentrations.
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Replacement of the root medium with the pH 4.0
medium with identical pH but supplemented with
250 mM of AlCl3 resulted in rapid and significant
membrane depolarization. The magnitude of depo-
larization in cv. UFGRS was 51mV in cv. São Gabriel
40mV, and in cv. Est. Ganador 35mV. Membrane
depolarization in root cortical cells of cv. INIA Draco
and cv. San Gabriel was much lower and did not
exceed 16mV. The EM of root cells of three cultivars
over the next 20–24 h partially (cv. Ganador, cv. Est.
Gabriel) or completely (cv. UFGRS) recovered.

In short-term experiments, all Al concentrations
tested induced a dose-dependent membrane depo-
larization. The depolarization was significantly
greater in the root cells of cv. UFGRS, especially
at lower Al concentrations (up to 500 mM), when the
depolarization was much stronger than in cv. Draco
(Figure 3).

The main objective in short-term electrophysio-
logical experiments was to characterize the sensi-
tivity of five Lotus cultivars to Al stress and
dynamics of Al-induced changes of EM during
exposure to 250 mM AlCl3. Al-induced membrane
depolarization occurred within 2min after Al
application in all cultivars. However, the magnitude
of the EM decrease was greater in cultivars UFGRS,
São Gabriel and Est. Ganador than in San Gabriel
and INIA Draco. Complete membrane repolarization
was achieved by removing aluminum from the
perfusion solution with all cultivars (Figure 4).
The EM of root cells treated with 250 mM Al
repolarized to control values within 24 h.

FC, the PM-H+-ATPase activator, applied to the
perfusion solution (15 mM) caused a rapid increase
of EM in control plants that was very similar in cv.
UFRGS and cv. Draco (Figure 5), regardless of
quantitatively different Al-induced hyperpolariza-

tion between these two cultivars. On the other
hand, after a 4-d Al treatment, a difference
between these two cultivars was observed. Al
caused only a small decrease of range and velocity
of the membrane hyperpolarization in cultivar
UFRGS, whereas in Draco much stronger inhibition
was apparent (Figure 5).

The diffusion potential (ED) was determined in
order to distinguish between passive and active,
i.e. energy-dependent components of the EM by
application of anoxia (perfusion with N2-saturated
standard solution). Under control conditions (pH
5.5) in root cells of all cultivars, anoxia caused a
rapid membrane depolarization to �72mV, the
value considered to be the level of the diffusion
potential (ED). At more acidic pH (pH 4.0), the ED
value was lower; however, the differences among
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cultivars or among the pH values of root media
were not significant.

Anoxic conditions in Al-treated roots induced
significant ED decrease, becoming greater with
time of Al exposure. Extremely low values of ED
were recorded after 4-d treatment with 2mM AlCl3
and differences among cultivars were observed.
Cultivars INIA Draco and San Gabriel were more
sensitive to Al than the cultivars Est. Ganador, São
Gabriel, and UFRGS (Table 2).

The decrease in EM and ED was followed by a loss
of K+ ions from Al-treated (2mM) roots (Figure 6).
Lowered values of ED induced by Al treatment likely

reflect the leakage of K+ ions from the root cells.
The total amount of K+ in the control roots
was higher in cv. INIA Draco than in cv. UFGRS,
whereas in Al-treated roots (4 d) the K+ content in
the sensitive cv. INIA Draco dropped from 31.4 to
16.8 mmol g�1 FW (46.5% decrease), but in the more
tolerant cultivar UFGRS only from 26.1 to 22.7 mmol
g�1 FW (29.2% decrease).

The rapid membrane depolarization, beginning
just minutes after Al applications but significant
effect of Al on potassium efflux from Lotus
root segments, was found only after 48 h of Al
treatment.

The rate of root respiration under control
conditions was higher in cv. INIA Draco than in cv.
UFRGS and this trend remained similar also during
Al treatment. Independent of the duration of Al
treatment (1 h or 4 d) Al inhibited root respiration
by 21–34% (Figure 7). When the cultivars were
compared, the Al-tolerant roots of UFRGS showed a
significantly lower rate of O2 consumption than
those of the Al-sensitive cv. INIA Draco. This was
found not only under Al stress, but also under
control conditions.

Discussion

Because Al can interact with a number of extra-
and intracellular structures, many different me-
chanisms of Al toxicity have been hypothesized.
These mechanisms include disruption of the plasma
membrane and plasma membrane transport pro-
cesses that can result in plant nutritional and
metabolic disorders. Results based on the measure-
ment of the electrical membrane potential of root
cells show a different extent of Al-induced depo-
larization. In the present experiments, the Al-
induced membrane depolarization was concentra-
tion-dependent and immediately reversible. The
rapidity and the reversibility of the Al-induced
depolarization indicate that Al may influence the
structure and permeability of plant cell membranes
(Olivetti et al., 1995). Results of our electrophy-
siological measurements in the outer cortical cells
are in agreement with the expected mode of
response that should reflect the different cultivar
status. In short-term experiments, aluminum
caused a rapid depolarization of the plasma
membrane in cells of both the more tolerant
cultivar UFGRS and the sensitive INIA Draco.
The depolarization was, however, much more
extensive in the more tolerant cultivar UFGRS.
Similar results were demonstrated on snapbean
(Phaseolus vulgaris) exposed to Al treatment
where Al-tolerant Dade showed significantly higher
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membrane depolarization than Al-sensitive Romano
(Olivetti et al., 1995). The authors suggested that
this depolarization may act as a signal that is
transduced into metabolic responses which enable
Dade to eventually acquire tolerance to Al.

Removal of free aluminum from the medium led
to complete regeneration of EM values. Consistent
with cultivar-dependent differences in sensing
aluminum, the recovery process was slower in cells
of the sensitive cultivar Inia Draco compared to the
tolerant UFGRS. Rapid membrane depolarization
might be explained by massive influx of calcium
through ligand-gated calcium channels. This could
be a reaction to an increased concentration of
glutamate (the ligand) outside the cells, since
efflux of glutamate is initiated by aluminum
(Sivaguru et al., 2003). Aluminum may either
accumulate on the cell surface (Horst et al.,
1999) or enter the plant cells (Vázquez, 2002)
when the root is exposed to aluminum ions. Illéš
et al. (2006) showed that the cells regenerate
membrane functions in recovery experiments,
which apparently means that aluminum remaining
on the cell surface lost its toxic effect. Alterna-
tively, removal of aluminum from the cell surface
via its internalization and sequestering within the
vacuole could also contribute to the recovery. This
scenario is in agreement with the present results.
Vacuolar deposits in aluminum-treated maize roots
support the tentative conclusion that vacuolar
compartmentalization of the internalized alumi-
num might be the method of its intracellular
detoxification (Vázquez, 2002).

Several of our results concerning of EM differ only
to a small extent from those presented by Kinraide
et al. (1992) in wheat roots and Lindberg et al.
(1991) in cells of fibrous roots of sugar beet, who
measured an initial EM value of about �100mV in
perfusion medium containing 1mM K+ because of

different experimental solutions used. An initial EM
of approximately –114 to �140mV was found in the
outer cortex cells of Lotus roots 3–5mm from the
root apex perfused with 0.1mM K+. Similarly high
EM values were registered by Olivetti et al. (1995)
in snapbean (P. vulgaris) roots and by Miyasaka
et al. (1989) in wheat roots. However, in contrast to
our results, no changes in initial EM values were
registered by these authors in cells from the zones
of cell division, cell elongation and mature root
cells exposed to Al and different pH. In particular,
the energy-dependent component (EP) of EM main-
tained by the H+-ATPase measured in root cortex
cells varied between �48 and �61mV depending
on the cultivar and pH (Table 2). The impact of
external pH on the values of EM and ED has been
demonstrated in various plant species (Kitasato,
1968; Spanswick, 1972; Ullrich-Eberius et al., 1984;
Ullrich-Eberius et al., 1989) and the marked
decrease of EM and ED at low pH was interpreted
as the effect of increased H+ influx across the
plasmalemma.

To characterize the immediate effect of Al on the
PM-H+-ATPase of root cells, we performed a set of
experiments with FC. The results show that the
functional activity of the H+-ATPase is not directly
influenced by Al treatment (Figure 5). This result is
confirmed by experiments that revealed that Al does
not counteract FC-caused hyperpolarization. The
response may indicate independent sites or modes
of action for alteration of H+-ATPase activity by Al
and FC. Independent action is suggested by the
permanent nature of the FC-caused hyperpolariza-
tion, which was never counteracted by Al addition.

Measurements of Al-induced K+ efflux in the bulk
solution revealed great differences between culti-
vars, but only a negligible effect of Al on K+ efflux
from the root segments (apical and basal part) was
observed.
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Al is often reported to decrease VT (Bennet
et al., 1985; de Lima and Copeland, 1994; Keltjens,
1988; Mossor-Pietraszewska, 2001). However, no
effect, including no increase of O2 consumption,
may also be expected (Cumming et al., 1992). In
the present study, the addition of Al to the nutrient
medium of Lotus plants inhibited O2 uptake by
excised root apices. This inhibition could have been
caused by Al affecting the electron transport
through the cytochrome pathway or oxidative
phosphorylation. Experiments with isolated mito-
chondria indicated that Al interacts directly with
the mitochondrial respiratory pathway (de Lima
and Copeland, 1994). On the other hand, respira-
tion fall may also be caused by the decrease of
growth rates. This means that the decrease in the
rate of root growth lowers the overall requirements
for respiratory ATP, and thus the rate of total
respiration (Atkin et al., 2000). When cultivars
were compared, the Al-tolerant UFRGS had a
significantly lower rate of O2 consumption than
the Al-sensitive Draco. This was found not only
under stress, but also under the following control
conditions. Thus, UFRGS seems to be inherently
‘‘cheaper’’ to produce in terms of carbon (C)
expended. Considering that a root utilizes a major
proportion of photosynthates (Lambers et al.,
2002), lower respiration rates in the root system
could enable more C to be utilized within shoot
growth. Therefore, the selection of cultivars, such
as UFRGS, exhibiting lower but more efficient C
consumption in the root could be an important
criterion for improving forage production of le-
gumes. However, to confirm whether this trait is of
agricultural importance, field experiments should
be performed. In addition, it seems that the
capability of plants to tolerate Al in their root
environment may be linked not only with their
anticipated ability to ‘‘save’’ energy for stress
responses and stress survival by reducing VT
(C expenditures) but also with their ability to
increase VTwhen the demand for respiratory energy
(ATP) to energize defense processes is elevated.
This assumption could explain the results of the
study of Cumming et al. (1992), where treatment
with Al increased root respiration in an Al-tolerant
bean cultivar (Dade) and reduced it in the sensitive
one (Romano).

The results presented here demonstrate the
effect of Al on EM of outer cortical Lotus root cells.
Al decreased the EM but did not influence the
plasma membrane PM-H+-ATPase. The extent of
depolarization was closely related to the sensitivity
of individual Lotus cultivars to Al. More tolerant
cultivars showed considerably stronger membrane
depolarization (EM) than the sensitive ones, sup-

porting the hypothesis about the role of EM in cell
signaling (Kinraide et al., 1992; Kochian, 1995). In
spite of numerous experiments on different plant
species in relation to Al toxicity, our work presents,
for the first time, information about the Al impact
on the membrane potential and respiration of root
cells of different cultivars of L. corniculatus in
relation to their sensitivity to Al. Due to the
observed correlation between the extent of EM
depolarization and the sensitivity of studied Lotus
cultivars to Al, this parameter as well as the
technique of EM measurement should be used for
rapid screening of resistant cultivars of Lotus for
application in agriculture.
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